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Abstract 

Some typographical errors were made in the original version of the manuscript 

associated with the value of the electron-phonon coupling constant for Ta, which are 

corrected here. 

 

The original version of the article incorrectly refers to the value for the 

electron-phonon coupling constant g for Ta as being 31×1018 W/(m3·K), citing 

reference [56] of the original paper. This should have been 3.1×1018 W/(m3·K), in 

line with the reference. This was a typographical error in the article, and it does not 

affect the modeling results, analysis or conclusions of the original paper. We are 

reproducing here the corrected tables and figures that referred to the incorrect value. 

Finally, when referring to Figure 8, the original text should read instead: “In blue 

and pink we artificially reduce the g of Ta by a factor of 10 and 135, respectively, to 

reach the g value of Au”. 
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Table 2: Thermophysical properties of different materials of interest in this work. 
θD is the Debye temperature, νL, νT and νoptical are highest frequencies of the 
longitudinal optical, longitudinal transverse and optical phonon branches, 
respectively. g is the electron-phonon coupling constant. 

Top Metal Interlayer Substrate 

Al 
θD = 428 K [51] 
νL= 9.6 THz [52] 
νT = 5.7 THz [52] 

g = 0.24×1018 W/(m3·K) [51] 

Ni 
θD = 450 K [51] 
νL = 9.1 THz [29] 
νT = 4.5 THz [29] 

g = 0.36 ×1018 W/(m3·K) [51] 

α-Al2O3 
θD =1035 K [53] 
νL =10 THz [31] 
νT = 6.9 THz [31] 
νoptical = 26 THz [31] 

Au 
θD = 165 K [51] 
νL = 4.6 THz [54] 
νT = 2.8 THz [54] 

g = 0.023×1018 W/(m3·K) [51] 

Ta 
θD = 225 K [55] 
νL = 5.5 THz [28] 

νT = 2.6 THz, 3.7 THz [28] 
g = 3.1×1018 W/(m3·K) [56] 

Si 
θD = 645 K [57] 
νL = 12 THz [30] 
νT = 4 THz [30] 

νoptical = 15.5 THz [30] 

 

Cr 
θD = 630 K [38] 
νL = 10 THz [28] 

νT = 6 THz, 7.7 THz [28] 
g = 0.42×1018 W/(m3·K) [58] 
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Figure 8: Comparison of modeled G for the Al/Ta/sapphire system with different 
EPC values. The red, blue and pink curves show the effect of decreased g values 
from the nominal Ta value of 3.1 × 1018 W/(m3 ·K), and reduced to 0.31 × 1018 
W/(m3 ·K) and to the value of Au of 0.023 × 1018 W/(m3 ·K). For comparison, the 
black curve is the Al/Au/sapphire system. The plot indicates that g dominates how 
rapidly the TBC saturates.  
 

 

 


