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Abstract

Solutions of the Peierls-Boltzmann transport equation using inputs from den-
sity functional theory calculations have been successful in predicting the thermal
conductivity in a wide range of materials. In the case of two-dimensional (2D)
materials, the accuracy of this method can depend highly on the shape of the
dispersion curve for flexural phonon (ZA). As a universal feature, very recent
theoretical studies have shown that the ZA branch of 2D materials is quadratic.
However, many prior thermal conductivity studies and conclusions are based on
a ZA branch with linear components. In this work, we systematically study the
impact of the long-wavelength dispersion of the ZA branch in graphene, silicene,
and α-nitrophosphorene to highlight its role on thermal conductivity predictions.
Our results show that the predicted κ value, its convergence and anisotropy, as
well as phonon lifetimes and mean free path can change substantially even with
small linear to pure quadratic corrections to the shape of the long-wavelength
ZA branch. Also, having a pure quadratic ZA dispersion can improve the con-
vergence speed, and reduce uncertainty in this computational framework when
different exchange-correlation functionals are used in the density functional the-
ory calculations. Our findings may provide a helpful guideline for more accurate
and efficient thermal conductivity estimation in mono- and few-layer 2D materi-
als.

1

mailto:chandraveer.singh@utoronto.ca


1 Introduction

Triggered by the successful isolation of graphene and its unique characteristics,
the study of single-layer and few-layer two-dimensional (2D) materials has be-
come the main focus of many research activities in materials science and con-
densed matter physics over the past two decades. Their features such as a large
surface-to-volume ratio, structural stability, ability to readily be combined into
heterostructures, and a promising combination of electronic, optical, and thermal
properties have made them ideally suited to modern devices. However, fulfilling
many of these potentials for targeted applications such as optoelectronics, ther-
moelectrics, thermal spreading, and interface materials closely depends on having
a fundamental understanding of the physics of thermal transport in these atom-
ically thin systems. Particularly, it is crucial to have an accurate estimation of
their lattice thermal conductivity κ, as it determines how effectively can spatially
localized heat be eliminated from the device. Furthermore, the use of materials in
highly integrated devices requires an understanding of non-diffusive heat trans-
port phenomena, which become prevalent at the nanoscale. Thus, many prior
studies have focused on the investigation of different aspects of thermal transport
in 2D materials by means of theoretical and experimental techniques. Based on
these studies, 2D materials offer a broad spectrum of room temperature thermal
conductivity, from very low values such as 0.26 Wm−1K−1 in PbSe monolayer
[1], to the high thermal conductivity shown in graphene of 5,300 Wm−1K−1 [2],
attractive for both thermoelectric and thermal management applications.
Within the theoretical approaches commonly used to predict the thermal con-
ductivity of 2D materials or to further interpret available experimental mea-
surements, solving the Peierls-Boltzmann transport equation (PBTE) with in-
teratomic force constants (IFCs) obtained from density functional theory (DFT)
calculations has become a powerful tool[1, 3–6]. Apart from its high accuracy, one
of the striking advantages of the PBTE/DFT method over other theoretical ap-
proaches such as simulations of molecular dynamics (MD) is its predictive power,
as it does not depend on empirical interatomic potentials which have not yet been
parameterized for many novel systems. However, there are also challenges with
the application of first-principles PBTE/DFT calculation in nanostructured ma-
terials [7]. One of the main issues of this method is the fact that the accuracy of
the predicted κ value depends highly on the accuracy of the second- and third-
order IFCs obtained from DFT, which in turn depend on careful optimization
of parameters such as the choice of the exchange-correlation functional (XCF)
and type of the pseudopotential (PP), cutoff energy for wavefunctions, size of
the supercell, cutoff radius, and k-point grid. Convergence tests do not always
provide a means to correct errors originating from choosing overly conservative
parameters that can mitigate computational cost. Even small errors in IFCs can
propagate into large inaccuracy in predicted phonon lifetime, group velocity, and
thermal conductivity. Although a few previous studies [8–11] provide helpful in-
sight into the effect of one or two of these factors in the accuracy of the predicted
κ value, simultaneous consideration of the effect of all these contributing factors
in the accuracy of PBTE/DFT κ calculation seems an extremely computation-
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ally expensive task.
In the case of 2D materials, the accuracy of the harmonic IFCs and dispersion
curve, particularly the acoustic out-of-plane flexural (ZA) phonon dispersion, can
pose additional challenges in PBTE/DFT κ calculation which are not encoun-
tered in bulk systems. It is well-known that the long-wavelength ZA phonons play
a central role in determining many properties of 2D materials such as phonon
thermal transport [2], electron-phonon coupling [12], thermodynamic stability
[13] and bending mechanics [14]. Predicted by continuum elasticity theory [15],
as a universal feature, the ZA branch in monolayers and van der Waals (VdW)
multilayer systems has purely quadratic dispersion. However, the general nature
of the ZA dispersion of low-dimensional materials in the long-wavelength limit has
remained to be a long-lasting debate both experimentally [16] and theoretically
[17, 18]. Many DFT calculations report a linear ZA branch close to the Γ-point
for 2D materials such as silicene [19, 20], phosphorene [6], MoS2 [21], WS2 [22], D-
graphene [23], T-graphene [23], and WSe2 [24], while other studies on the same 2D
materials report a quadratic ZA branch (silicene[25],phosphorene[26],WS2[27]).
As one of the first microscopic attempts to clarify the situation in atomistic sys-
tems, a study by Carrete et al. [18] suggested that the ZA branch in unstrained
2D materials, whether they are planar or buckled, is purely quadratic. In this
study, they developed a reformulation of the second-order IFCs in terms of inter-
nal coordinates which adds a post-processing step to the “raw” harmonic IFCs
obtained from common DFT packages to enforce the necessary and sufficient con-
ditions for rotational symmetry which first were formulated by Born and Huang
[28] and later modified by Gazis and Wallis [29], and Wang et al. [30]. These
conditions ensures that the potential energy of the system and the force acting
on each particle in the absence of external fields remains invariant under rigid
rotation. In Ref.[18], the presence of linear components in the ZA branch of some
2D materials predicted by previous studies was also attributed to the possible
violation of the rotational symmetry conditions. furthermore, in another recent
analytical study based on lattice chain theory Kuang et al. [17] showed that the
ZA branch in covalent and van der Waals monolayer and multilayer 2D lattices
has quadratic dispersion, independent of their backbone geometry.
The behavior of the ZA mode in the long-wavelength limit (whether quadratic
or linear) can substantially affect different aspects of phonon thermal transport
in 2D materials, including the predicted κ value, its convergence or divergence in
the limit of infinite system size, and even its anisotropy. As a common problem,
the ZA dispersion near the center of the Brillouin zone obtained from the raw
IFCs calculated using common software packages shows either linear components
or, in severe cases, a small U-shaped region with imaginary frequencies. This can
be attributed to either structure-related reasons such as hybridization between
the polarization of the TA/LA modes with the ZA mode which usually occurs
in non-planar 2D materials, or to DFT-related reasons such as using periodic
boundary conditions along different axes, and numerical inaccuracies caused by
insufficient cutoff values and not large enough supercell adopted in the calcula-
tions. All of these can lead to a breakdown of the rotation symmetry and lead
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to non-quadratic ZA branch. Unfortunately, except for a few cases, many pre-
vious works that studied different aspects of thermal transport in 2D materials
by the PBTE/DFT method have been performed using the raw IFCs directly
obtained from DFT packages, with the possibility of violation of the rotational
invariance constraint. For example, based on two studies using the PBTE/DFT
method, one by Xie et al. [31], and another one by Gu and Yang [20], the in-
trinsic thermal conductivity of unstrained silicene diverges with denser q-mesh.
However, inspection of their phonon dispersion shows that their ZA branch close
to the Γ-point has linear components. In another study by Kuang et al. [32]
with the same methodology, the intrinsic κ of infinite unstrained silicene con-
verged with increasing q-point grid points. The dispersion curve used in [32] is
more quadratic than [20] and [31], but still is not purely quadratic. Thus, nat-
urally, questions arise such as what the true value and convergence/divergence
behavior of κ in silicene is, and whether enforcing a perfectly quadratic ZA curve
during PBTE/DFT calculations is a rigorous computational approach. Another
important research question when using the PBTE/DFT calculation framework
to predict κ has been about the effect of different exchange-correlation func-
tional and pseudopotential types on the final predicted value of κ. Regarding 2D
materials, Taheri et al.[8] and Qin et al. [9] used different exchange-correlation
functionals to study κ of graphene as a benchmark. Based on their results, us-
ing different exchange-correlation functional leads to a considerable diversity on
the predicted κ value, in the range of 1,936-4,376 Wm−1K−1 according to [9],
and 5,442–8,677 Wm−1K−1 according to [8]. In both studies, the wide range
of predicted κ values is attributed to the considerable difference in the phonon
lifetimes at the long-wavelength limit predicted by different exchange-correlation
functionals. However, investigation of the phonon dispersion curves presented by
these studies also reveals the possible presence of linear components in the ZA
dispersion at the long-wavelength limit, resulting in non-zero group velocity at
Γ. So, this may raise an open question whether enforcing the rotational invari-
ance before thermal conductivity calculation on the raw harmonic IFCs obtained
by each exchange-correlation functional to get a purely quadratic ZA dispersion
leads to more consistent predicted κ value in 2D materials.
In this study, we revisit the phonon thermal transport in 2D monolayers in-
cluding graphene, silicene, and α-nitrophosphorene (α-NP) as representative 2D
structures with flat, buckled, and puckered backbone geometries, respectively.
The results of black phosphorene is also presented in the the supplemental ma-
terial. In each case, PBTE/DFT κ calculations are performed based on both
commonly used raw harmonic IFCs directly obtained from DFT packages as well
as post-processed corrected IFCs which fully satisfy the rotational invariance
constraint. The dominant effects of this correction on various fundamental as-
pects of thermal transport in 2D materials such as κ value and its anisotropy,
convergence/divergence, and uncertainty with respect to using different XCFs
are systematically studied.
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2 Computational Methods

As the first step in the PBTE/DFT κ calculation workflow, the unit cell of
the three monolayers studies here are fully relaxed using the Quantum Espresso
(QE) package to obtain the optimized lattice vectors and atomic positions. Ex-
cept for graphene, where different exchange-correlation functionals are tested,
we use a Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional with
a projected augmented wave (PAW) pseudopotential for DFT calculations. The
electronic wave functions are expanded with plane waves up to an energy cutoff
of 110 Ry. An electronic k-point mesh of 31 × 31 × 1 centered at Γ is used for
reciprocal space integration of the Brillouin zone (BZ). The energy and force con-
vergence thresholds in geometry relaxation are set to 10−11a.u. and 10−10a.u.,
respectively. We also use a vacuum spacing of 20Å along the z axis to eliminate
artificial interactions between neighbouring layers. Figure 1 shows the optimized
unit cell and a supercell of the different monolayers considered in this work.
Summarized in Table. 1 are also the optimized lattice constants (a and b) and
the puckering/buckling distance (∆) for each structure. Our results are found to
be in good agreement with previously reported values [33–35].
Having obtained the relaxed geometrical parameters for each monolayer, the har-
monic phonon calculations are then performed to obtain the second-order IFCs
and phonon dispersion curves using the PHONOPY package [36]. We compute
the second-order harmonic IFCs in 8 × 8 × 1, 8 × 8 × 1, and 10 × 10 × 1 su-
percells for graphene, silicene, and α-NP, respectively. We use the term “raw”
throughout this paper to refer to the harmonic IFCs directly obtained from
PHONOPY at this step, with no further correction. After obtaining the raw
harmonic IFCs, we use the method proposed in Ref. [37] using the HiPhive
package to enforce the rotational invariance conditions. Here we briefly explain
the general idea behind the post-processing approach to enforce, for example,
the rotational invariance. Having obtained the IFCs ã and rotational constraint
matrix Crot, if the rotational invariance is satisfied then Crotã = 0. However,
usually, the ã obtained from DFT packages does not satisfy this condition, and
Crotã = d , where d is a parameter that shows how well the IFCs satisfy the
rotational constraint. To address this, a set of corrections ∆ã are defined such
that Crot(ã + ∆ã) = 0. The problem then becomes finding the set of ∆ã, sub-
ject to the constraint ||Crot∆ã + d|| < ε1 and ||∆ã|| < ε2, where ε1 and ε2 are
numerical tolerance parameters. This problem can then be solved for example
by ridge regression using the l2 − norm. More details about this method can be
found in Ref.[37].

Next, we calculate the third-order anharmonic IFCs using the finite difference
method implemented in the thirdorder.py script [38]. We use 9×9×1, 9×9×1,
and 5× 5× 1 supercells for graphene, silicene, and α-NP, respectively. Also, the
atomic interactions are considered up to the 8th nearest neighbor in graphene
and silicene, and up to the 10th nearest neighbor in α-NP.
Finally, having obtained the second-order and third-order IFCs the lattice ther-
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Figure 1: The unit cell, and top and side views of supercells of (a) graphene, (b) silicene, and
(c) α-NP. The lattice constants are shown as a and b, and the puckering/buckling distance
is denoted by ∆. The x and y directions are also shown.

mal conductivity based on the iterative solution is expressed as

κααl =
1

kBT 2ΩN2

∑
λ(q,p)

n0λ(1 + n0λ)(~ωλ)2vαλF
α
λ , (1)

where kB is Boltzmann’s constant, T is the temperature, Ω denotes the unit cell
volume, N2 is the total number of q-point mesh used for the first BZ integration
(N ×N × 1 q-point grid), λ(q, p) represents a phonon mode with wave-vector q
and polarization branch number p, n0λ is the phonon occupation number based
on Bose-Einstein statistics, ω is the phonon frequency, ~ is the reduced Plank
constant, vαλ represents the phonon group velocity in the direction α, and Fλ is

Table 1: The calculated lattice constants (a and b) and puckering/buckling height (∆) in
2D crystals considered in this study. All results are obtained using a

Material a(Å) b(Å) ∆(Å)
Graphene 2.47 2.47 -
Silicene 3.87 3.87 0.45
α-NP 4.17 2.71 1.90
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given by

Fλ = τ0λ(vλ + ∆λ), (2)

in which τ0λ is the relaxation time of mode λ and ∆λ is a correction term with
the dimension of velocity. Other details about this method can be found in Ref.
[38]. Also, we use the thicknesses of 3.35 Å[3], 4.20Å[32], and 6.35Å[39, 40] for
graphene, silicene, and α-NP, respectively.

3 Result and Discussion

3.1 Graphene

We first consider graphene as the most well-known 2D material with a flat planar
lattice structure. Despite the extensive experimental and theoretical research
efforts during the last decade, many aspects of phonon thermal transport in
monolayer and multilayer graphene such as the uncertainty in the value of lat-
tice thermal conductivity, its convergence behaviour, the effect of higher order
phonon-phonon processes, and finite temperature effects are still active topics
of study. Here we focus on the effects that correcting IFCs obtained from DFT
packages using the post-processing approach discussed in section 2 can have on
phonon thermal transport in freestanding infinite monolayer graphene. Figure
2(a) shows the phonon dispersion curve of graphene using both raw and corrected
IFCs. As there are two atoms in its unit cell, the dispersion curve of graphene
consists of six total modes, three of which are acoustic modes (labeled as ZA,
TA, and LA) and the rest are optical modes. With the scales of Figure 2(a), for
all phonon modes the two dispersion curves are visually indistinguishable; both
show no negative frequencies in the vicinity of the Γ point, the ZA mode at the
long wavelength limit for both IFCs seems quadratic, and the TA and LA modes
in the same limit are linear. However, a careful investigation of phonon frequen-
cies in the regions very close to the Γ point in both Γ−M and Γ−K directions
reveals that the ZA branch obtained by raw IFCs deviates from a pure quadratic
dispersion, and contain linear components. This can be better seen in Figure 2
(b) and (c) which show detail of the phonon dispersion curves in the vicinity of
the Γ point along the Γ −M and Γ −K directions, respectively. For example,
as shown in Figure 2 (b), a fit of ω(q) for the ZA phonon mode obtained from
the raw IFCs for 0 < q < 0.06 in the Γ −M high-symmetry direction gives a
linear coefficient ω = 6.46q, while the ZA branch obtained from the corrected
IFCs perfectly fits a quadratic relation as ω = 76.79q2 + 0.0004q which has a
negligible linear component. We also note that except this difference in the ZA
mode, other phonon modes including TA, LA and optical phonons remain per-
fectly unchanged after the correction.
Next, we consider the phonon group velocity obtained using the raw and cor-
rected IFCs. Here we focus on acoustic modes as they have much larger group
velocity compared to the optical modes, and are known to dominate the phonon
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thermal transport in graphene. As group velocity is defined as vg = dω
dq , we ex-

pect that the correction of IFCs also affects the group velocity of the ZA mode
close to the Γ point. Figure 3(a) shows the group velocity of acoustic modes
over the entire Brillouin zone in graphene. The quadratic nature of the ZA mode
close to the Γ point imposes a zero group velocity for this mode at Γ. However,
based on Figure 3(a), the linear components of the ZA dispersion at the long
wavelength limit obtained from the raw IFCs leads to a non-zero group velocity
of about 1.3 km/s for this mode. This non-zero group velocity vanishes at Γ
when corrected IFCs are used, as a result of the strictly quadratic shape of the
ZA branch close to this point (Figure 2(b)). Except for the case of the ZA mode
at the long wavelength limit, the maximum change in the group velocity of other
phonons obtained from raw or corrected IFCs is less than 5%.
Now we consider the convergence behavior of the thermal conductivity when
the raw or corrected second-order harmonic IFCs are used. The question of
whether thermal conductivity of infinite size free standing graphene considering
only three-phonon scattering process converges or not has been a very controver-
sial topic experimentally [2, 41] and theoretically by means of MD [42, 43] and
DFT [3, 44] thermal conductivity calculations frameworks. Figure 3(b) and (c)
show the convergence behavior of room temperature lattice thermal conductivity
in free standing infinite graphene using the iterative solution in the PBTE/DFT
method based on the corrected and raw harmonic IFCs. The anharmonic third-
order IFCs used in the calculations for both cases are the same. Very interest-
ingly, we found that the seemingly small change in the behavior of the ZA modes
close to Γ after enforcement of the invariance rules drastically affects the conver-
gence behavior of the predicted κ. Based on Figure 3(b), the κ value obtained
using the corrected IFCs is well converged with respect to increase in size of the
q-point mesh used to integrate over the BZ. As can be seen in Figure 3(b), a
100 × 100 × 1 q-point mesh is sufficient to converge the value of κ, and further
increase in q-point mesh results in less than 5% change in thermal conductivity.
Recently, Kuang et al. [44] also reported the convergence of thermal conductivity
of infinite graphene only considering three-phonon processes, but based on their
results the convergence is achieved using an extremely dense q-point mesh of
301× 301× 1 in the calculations. As the size of the q-point mesh used in ther-
mal conductivity calculation step within PBTE/DFT method greatly affects the
computational cost and memory requirement, our results suggest that by correct-
ing the harmonic IFCs one can also gain considerable computational efficiency.
Now, we consider the convergence behavior of the lattice thermal conductivity
obtained by using raw IFCs, as shown in Figure 3(c). Contrary to the case of
corrected IFCs, it can be seen that κ increases almost linearly with the size of
q-point grid. So, based on our findings, we attribute the logarithmic divergence
of intrinsic κ in graphene reported in the prior studies to possible violation of ro-
tational symmetry of the ZA mode. For the sake of comparison, we also calculate
the value of lattice thermal conductivity in a very dense grid of 270× 270× 1 in
these two cases. The κ value obtained using the raw and corrected IFCs at 300K
are 4,390 Wm−1K−1 and 3,850 Wm−1K−1, respectively. We will compare these
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values to experimental data in the literature later. To better shed light onto the
reason for this difference in the convergence of thermal conductivity, we consider
the phonon lifetime of acoustic modes as shown in Figure 4(a). Based on our
results, the correction of the harmonic IFCs mostly affects the lifetimes of the
ZA phonons at the long wavelength limit, as they become shortened by about
two orders of magnitudes compared to the lifetime obtained by raw IFCs, similar
to the case of borophene [18]. At frequencies higher than 1 THz, the phonon
lifetimes of all acoustic modes practically remain unchanged after the correc-
tion. Usually, the phonon lifetime of the ZA mode at the long wavelength limit
scales by a power law relation with frequency as τ = βω−γ , where β and γ are
strain-dependent parameters. It was shown that the divergence of the thermal
conductivity occurs when γ > 2 [43, 44]. Our numerical fitting shows that the
value of γ is 2.70 and 0.16 for raw and corrected IFCs, respectively. This explains
the divergence and convergence behavior observed in thermal conductivity using
raw and corrected IFCs, respectively. In short, the extremely long lifetime of
the ZA phonons close to Γ, combined with their non-zero group velocity (Figure
3(a)) obtained when using raw IFCs causes the divergence of κ. We also explore
the mode contribution to total thermal conductivity obtained by the corrected
IFCs, which shows that the ZA mode is still the dominant mode in graphene
with about 85% contribution. The contribution from the TA and LA modes are
found to be about 12% and 3%, respectively.
Next, we consider the normalized thermal conductivity accumulation as a func-
tion of the phonon mean free path (MFP). This parameter is of particular im-
portance for the design and tuning of the thermal conductivity of a system by
changing its size. Figure 4(b) shows the normalized accumulation as a function
of the phonon MFP for both corrected and raw harmonic IFCs. As a typical
measure to determine what range of MFP contributes most to the κ value, the
MFP responsible for 50% of the total thermal conductivity is examined, Λ?. As
can be seen in Figure 4(b), Λ? for both corrected and raw harmonic IFCs are
very similar, about 1,300 nm. However, we recognize a striking difference be-
tween thermal conductivity accumulation functions of corrected and raw IFCs.
Based on what the corrected IFCs predict, the thermal conductivity of graphene
saturates at phonon MFP of about 42,000 nm, with practically no contribution
from phonons with higher MFP. However, based on prediction of raw IFCs the
saturated MFP is about 572,000 nm, one order of magnitude higher than that
predicted by the corrected IFCs. We believe that such long MFP contribution
is an artifact resulting from the extremely long lifetime of the ZA phonons in
the long wavelength limit together with their unphysical non-zero group velocity.
This shows that correcting the harmonic IFCs can also affect the thermal conduc-
tivity accumulation function, of practical importance when designing graphene-
based systems.
The uncertainty in κ prediction by the PBTE/DFT framework when using dif-
ferent types of XCF and PP in DFT calculations has been known as one of the
drawbacks of this method. Jain and McGaughey [11] used different types of XCF-
PP to calculate κ in crystalline silicon. They found that using different XCF-PP
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can results in about 35% discrepancy in final κ prediction. For 2D materials, the
discrepancy is reported to be even worse as Ref. [8] and Ref. [9] used different
XCF-PP combinations to predict κ in graphene and reported values in the range
of 5,442–8,677 Wm−1K−1 [8] and 1,936-4,376 Wm−1K−1 [9]. In both stud-
ies, the relatively large discrepancy between the prediction of different XCF-PP
stemmed from different phonon lifetime and the Grüneisen parameters of the ZA
mode at the long wavelength limit. Very recently, Mortazavi el al. [45] proposed
an accelerated method based on machine learning interatomic potentials to pre-
dict κ using the ShengBTE code. They used three different XCFs to train their
data set, and found the values of 3,730, 3,640, and 3,600 Wm−1K−1 for thermal
conductivity of graphene, and thus concluded that unlike the prior reports by [8]
and [9], the effect of XCFs on the estimated thermal conductivity is negligible.
Here, based on the results of Figure 4(a), we suspect that the difference in life-
time observed previously by Ref. [8] and Ref. [9] at the long wavelength limit,
which in turn leads to large difference in κ when different types of XCF-PP are
used, is more related to how well the ZA mode is predicted to be quadratic when
q → 0 in each XCF-PP, rather than the direct effect of XCF-PP used. Thus, here
we compare three different XCF-PP: PBE-PAW, PBEsol-PAW, and LDA-PAW,
which yield the most inconsistent results when predicting κ, according to Ref.
[8]. However, in each case, after obtaining the raw IFCs from DFT, they were
corrected to ensure that the ZA mode close to the Γ point is perfectly quadratic.
The predicted κ values obtained this way as function of temperature between
300K to 550K are shown in Figure 5. This figure also shows the κ values from
raw IFCs at a dense grid of 270×270×1 when the PBE-PAW combination is used
in the DFT calculations. We also included two experimental results that have
been usually used to evaluate the PBTE/DFT κ prediction of graphene. One
of the experiments was carried out on a practically isotopically pure graphene
sample (only having 0.01% C13) with a size of 2.8 µm [46], the other on a larger
sample of 9.7 µm [47]. Interestingly, as can be seen in Figure 5, our findings
show that the κ values predicted by different XCF-PP combinations after im-
posing the correction on the harmonic IFCs shows an excellent consistency with
each other, and also with the experimental data. The room temperature pre-
diction of κ by corrected IFCs using PBE-PAW, PBEsol-PAW, and LDA-PAW
combinations are 3,850, 3,552, and 3,749 Wm−1K−1, respectively. These values
are also in very good agreement with the method based on machine-learning
interatomic potential proposed by Ref. [45]. Also, we note that considering a
single XCF-PP of PBE-PAW, the predicted κ by the corrected IFCs over the
temperature range studied is generally in a better agreement with experiment
than that predicted by raw IFCs (Figure 5). So, our findings suggest that post-
processing the harmonic IFCs can help to increase the accuracy in PBTE/DFT
κ calculation framework, and also reduce the uncertainty when using different
XCF-PP combinations. Finally, we note that the PBTE/DFT prediction of ther-
mal conductivity presented here is based on three-phonon scattering processes.
However, recent studies show that considering four-phonon scattering processes
in graphene can further reduce the thermal conductivity [48], and leads to even
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Figure 4: (a) Lifetime of the acoustic modes in graphene from raw and corrected harmonic
IFCs at 300K. (b) Normalized thermal conductivity accumulation in graphene from corrected
and raw harmonic IFCs at 300K.

3.2 Silicene

Silicene, having a buckled hexagonal lattice structure, is the silicon counterpart of
graphene, a member of the group-IV monolayers which also includes germanene
and stanene. Unlike graphene, which has a flat atomic structure, silicene pos-
sesses a buckled structures with a tunable electronic band gap [49]. Due to
challenges in preparing freestanding

silicene samples experimentally, a great deal of attention has been given to
the numerical study of κ in silicene using methods such as MD [50–52] and
PBTE/DFT [31, 32, 53, 54]. However, these methods are also not exempt from
inconsistency in the predicted value of κ and its convergence behavior. For exam-
ple, very recently, values of 9.2 Wm−1K−1 [55] and 27.72 Wm−1K−1 [54] were
predicted using the PBTE/DFT method. Here, we revisit the phonon thermal
transport in silicene with a focus on the behavior of the ZA mode close to the Γ
point. Figure 6(a) shows the phonon dispersion curve of silicene obtained by both
corrected and raw harmonic IFCs. Similar to graphene, the acoustic modes are
shown by ZA, TA, and LA. As can be seen in Figure 6(a), the dispersion curves
predicted by the corrected and raw IFCs again are almost indistinguishable, ex-
cept for the ZA mode in a region very close to Γ (for example, 0 < q < 0.06,
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Figure 6(b) and (c)). Based on our numerical fitting, the dispersion curve ob-
tained directly from DFT contains linear components at the long wavelength
limit as ω = 3.39q, while for corrected IFCs the dependence on phonon wave
vector q is quadratic, ω = 21.81q2. Next, we consider the phonon group velocity
of the acoustic modes in silicene predicted by raw and corrected IFCs, as shown
in Figure 7 (a). Similar to graphene, the most notable difference between the
predicted group velocities is the non-zero group velocity of about 1.5 km/s pre-
dicted using the raw IFCs, whereas the corrected IFCs yield zero, as it should
be.
Similar to graphene, the convergence of the intrinsic thermal conductivity of
silicene with respect to q-mesh size when only three-phonon scattering pro-
cesses are included has been a topic of debate. Using the iterative solution
and the PBTE/DFT framework, a divergent behavior was reported by Ref.[31]
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Figure 6: (a) Phonon dispersion curve of silicene using the raw and corrected harmonic
IFCs. (b) Zoomed-in dispersion close to Γ along Γ-M. (c) Zoomed-in dispersion close to Γ
along Γ-K.

and Ref.[20], while convergence has been reported by others Ref.[32, 54]. Figure
7 (b) and (c) show the variation of thermal conductivity in silicene by increasing
the q-mesh size obtained from corrected and raw harmonic IFCs. Similar to
graphene, we find that using raw IFCs, the thermal conductivity diverges even
when considering a very dense q-mesh grid. However, κ has a well converged be-
havior if corrected harmonic IFCs are used in the calculations. For comparison,
we determine the room temperature κ at a dense q-point grid of 200× 200× 1,
and find the the values of 22 Wm−1K−1 and 40 Wm−1K−1 by corrected and
raw IFCs, respectively. We note that the value of 22 Wm−1K−1 agrees well
with the value of about 26 Wm−1K−1 that is recently reported when IFCs are
obtained using machine learning interatomic potentials [45]. It is also interesting
to note that, similarly to graphene, using corrected IFCs can greatly accelerate
the convergence of κ. For example, a prior work used a 90 × 90 × 1 q-grid to
achieve the convergence, however, based on Figure Figure 7 (b), we find that
even a 30 × 30 × 1 grid is reasonably sufficient to get a converged value. The
phonon lifetime obtained by the raw and corrected IFCs in silicene is illustrated
in Figure 8(a). As opposed to graphene, it can be seen that in silicene the TA
and LA modes have longer lifetime than the ZA mode, which stems from the
breakdown of the mirror symmetry in silicene. Based on Figure 8(a), using the
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Figure 7: (a) Group velocity of acoustic modes in silicene. (b) and (c) show the convergence
of thermal conductivity of silicene at 300K with respect to q-point grid size predicted by the
corrected and raw harmonic IFCs, respectively.

corrected IFCs affects not only the lifetimes of the ZA mode, but also those of
the TA and LA modes. For example, compared to raw IFCs, the lifetime of the
long wavelength ZA and TA modes predicted by corrected IFCs are shortened by
about four and three orders of magnitude, respectively. Again, we analyze the
power law behavior for the lifetimes of the long-wavelength ZA and TA modes.
Interestingly, we find that γ is about 1.0 for the ZA mode, so it cannot be the
reason of the κ divergence in silicene (divergence occurs for γ > 2). However,
γ is found to be about 2.5 for the TA mode. Here we show that, similarly to
the ZA mode [44], having γ > 2 for the TA mode in the power law relation also
results in the divergence of thermal conductivity. Let N ×N × 1 be the q-mesh
used for integration over the BZ. The smallest non-zero |q| associated with the
choice of N is ξ

N , where ξ is a constant. Now we find the dependency of each
contributing term in Equation 1 on N for large values of N . The TA branch in
the phonon dispersion curve has a linear dependence on q as q → 0. So in this
limit, ω ∝ 1

N . Also, due to this linear dependency, the TA group velocity at this
limit should be constant and independent of N , v ∝ N0. Based on Equation 1,
the product n0(1 +n0), where n0 is the equilibrium population of phonons given
by n0 = 1

exp( ~ω
KBT

)−1
, is another contributing factor in determining the thermal

conductivity. Using the approximation ex ≈ 1 + x which is valid for x << 1,
it can be seen that n0(1 + n0) ∝ N2. Finally, assuming the power law relation
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Figure 8: (a) Lifetime of the acoustic modes in silicene from raw and corrected harmonic
IFCs at 300K. (b) Normalized thermal conductivity accumulation in silicene from corrected
and raw harmonic IFCs at 300K.

of τ = βω−γ , we find that τ ∝ Nγ . substituting all these in Equation 1 gives
κ ∝ Nγ−2. So, to guarantee a converging behavior for κ when N → ∞, it is
necessary to have γ − 2 < 0, or γ < 2. This can explain why the TA mode with
a γ value of 2.5 obtained when raw IFCs are used leads to divergence of κ in
silicene. However, when the corrected IFCs are used, the TA modes at the long
wavelength limit becomes almost independent of ω (γ ≈ 0), and the convergence
occurs as in Figure 8(b).
We also calculate the contribution from different phonon modes in κ of silicene us-
ing corrected harmonic IFCs, and find that the ZA, TA, and LA modes contribute
about 15%, 29%, and 29% to the total lattice thermal conductivity, respectively.
Also, the optical modes contribute about 27%. Finally, we plot the normal-
ized thermal conductivity accumulation function obtained by raw and corrected
IFCs on a 200 × 200 × 1 q-point grid in Figure 8(b). It can be seen that using
the corrected IFCs considerably affects the accumulation function as well. The
corresponding Λ? values (defined in section 3.1) are determined to be about 20
nm and 75 nm for corrected and raw IFCs, respectively. Also, one can see that
the corrected IFCs predict κ to saturate for MFP of about 230 nm. However,
raw IFCs predicts that there are still contribution from phonons with MFP of
about 89,000 nm. Therefore, similarly to the case of graphene, using corrected
harmonic IFCs is crucial to obtaining a physically correct thermal conductivity
accumulation function.
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3.3 α-Nitrophosphorene

As an example of a 2D monolayer with a puckered structure, here we consider α-
NP, which has recently attracted considerable attention due to promising proper-
ties such as improved air stability compared to black phosphorene [56, 57], highly
anisotropic electron mobility [57], and negative Poisson’s ratio (NPR)[33]. A de-
tailed study of the phonon thermal transport in α-NP can be found in Ref.[58].
Here, we focus on the effects that correcting the harmonic IFCs can have on pre-
dicted thermal conductivity in this monolayer. Figure 9(a) shows the dispersion
curve of α-NP based on corrected and raw harmonic IFCs. As can be seen in
Figure 1(c), there are four atoms in the unit cell of α-NP which results in three
acoustic and nine optical modes in its dispersion curve. The situation in α-NP is
different from graphene and silicene, as using the raw IFCs results in a U-shaped
region in the dispersion curve with small, negative ZA phonon frequencies (less
than 0.3 THz) along both Γ− Y and Γ−X directions. However, when the cor-
rected IFCs are used the negative frequency region disappears, and the quadratic
shape of the ZA mode is recovered (Figure 9(b) and (c)). Figure 10(a) and (b)
shows the calculated lattice thermal conductivity as a function of q-point grid
size using raw and corrected harmonic IFCs and the same third-order anharmonic
IFCs. Here we find that both sets of IFCs results in converged values of thermal
conductivity. However, the anisotropy predicted by the corrected one is reversed
compared to that predicted by the raw IFCs. Based on Figure 10(a), the room
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temperature κ value predicted by raw IFCs converges to κxx = 12.2Wm−1K−1

and κyy = 21.2Wm−1K−1 which implies κyy > κxx. However, based on corrected
IFCs we find that κxx = 36.1Wm−1K−1 and κyy = 18.7Wm−1K−1, suggesting
κyy < κxx. This reversed anisotropy prediction is found for the whole tempera-
ture range studied (300K to 800K), as illustrated in Figure 10(c). The reversed
anisotropy predicted by raw IFCs directly obtained from DFT compared to the
prediction of the corrected IFCs is also reported by Ref. [18] for the case of
monolayer borophene. Thus, using harmonic IFCs that results in negative ZA
phonon frequencies (even when very small) can greatly affect the κ prediction,
even to the point of reversing the anisotropy in the anisotropic systems.

4 Summary and Conclusion

Solving the PBTE based on DFT is currently the most powerful theoretical tool
to predict lattice thermal conductivity in a wide range of materials. To use this
framework, however, obtaining an accurate phonon dispersion curve is a nec-
essary step, which has been always challenging when considering 2D materials,
particularly for the acoustic flexural ZA branch. Very recent studies based on
the lattice chain theory shows that as a universal feature, the ZA mode in 2D
mono- or few-layer systems at the long wavelength limit has a quadratic shape.
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However, due to numerical inaccuracies, the ZA branch calculated by commonly
used DFT packages in many previous studies either has small linear compo-
nents or negative frequencies. Thus, post-processing of the raw harmonic IFCs
to manually impose the rotational invariance conditions and obtain a perfectly
quadratic ZA branch dispersion is necessary before any thermal conductivity cal-
culation. Here, we systematically revisit phonon thermal transport in graphene,
silicene and α-nitrophosphorene as showcases with flat, buckled, and puckered
structures to demonstrate how correcting IFCs affect κ predictions based on the
PBTE/DFT method. We find that even visually small changes in the shape
of the ZA branch as a result of correcting IFCs can substantially improve the
PBTE/DFT results in terms of predicted κ value, convergence behavior, uncer-
tainty in the results obtained by using different XCF-PP combinations, phonon
mean free path, and predicted anisotropy. For example, in the case of silicene,
we find that using the raw harmonic IFCs directly from DFT results in diver-
gence of thermal conductivity. However, lattice thermal conductivity based on
the corrected harmonic IFCs is well-converged at a 30 × 30 × 1 q-point grid,
which is much faster and computationally less expensive convergence compared
to previous studies. Also, evaluated on a very dense grid of 200×200×1 q-point,
we find a 45% difference between predicted thermal conductivity of silicene by
raw and corrected harmonic IFCs, with the latter in much better agreement
with the prediction of recently developed approaches that incorporate machine
learning methods in DFT. Our findings can provide helpful insight for further
fundamental phonon transport analysis in 2D materials.
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